banner
璃香小代

璃香小代

CS/语言学习/日记 CN/JP/EN/LA

复旦高代第一章 行列式 §1.1 二阶行列式 anki版问答试问

问题答案
线性方程组中的未知数个数和方程式个数是否相等?可以相等,也可以不相等。
在矩阵形式线性方程组 Ax = b 中,A 代表什么?系数矩阵。
在矩阵形式线性方程组 Ax = b 中,x 代表什么?未知数向量。
在矩阵形式线性方程组 Ax = b 中,b 代表什么?常数向量。
线性方程组的解?唯一解,无解或无穷多个解。
n 元线性方程组的标准式是什么样子的?a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots\\a_{m1} x_{1}+a_{m2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array}
abcd=\left\|\begin{array}{ll}a & b \\ c & d\end{array}\right\|=adbcad-bc
设有二元一次方程组{a11x1+a12x2=b1a21x1+a22x2=b2\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right.求写出克莱姆形式的解并校对自己推导过程?a22a_{22}乘第一式的两边,用 a12 -a_{12}乘第二式的两边得:{a11a22x1+a12a22x2=b1a22,a12a21x1a12a22x2=b2a12.\left\{\begin{array}{l}a_{11} a_{22} x_{1}+a_{12} a_{22} x_{2}=b_{1} a_{22}, \\-a_{12} a_{21} x_{1}-a_{12} a_{22} x_{2}=-b_{2} a_{12} .\end{array}\right.将这两个方程式两边相加得:(a11a22a12a21)x1=b1a22b2a12.\left(a_{11} a_{22}-a_{12} a_{21}\right) x_{1}=b_{1} a_{22}-b_{2} a_{12} .于是x1=b1a22b2a12a11a22a12a21.x_{1}=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{12} a_{21}} .用类似的办法消去 x1x_{1}解得:x2=a11b2a21b1a11a22a12a21.x_{2}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}} .
如何记忆二元一次方程组:{a11x1+a12x2=b1a21x1+a22x2=b2\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right. x1=b1a12b2a22a11a12a21a22,x2=a11b1a21b2a11a12a21a22x_{1}=\frac{\left\|\begin{array}{ll}b_{1}&a_{12}\\ b_{2} & a_{22}\end{array}\right\|}{\left\|\begin{array}{ll}a_{11}&a_{12}\\ a_{21} & a_{22}\end{array}\right\|}, x_{2}=\frac{\left\|\begin{array}{ll}a_{11} & b_{1} \\ a_{21} & b_{2}\end{array}\right\|}{\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|} (1)x1 与 x2 的分母都是行列式a11a12a21a22\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\| ,即只需将原方程组未知数前的系数按原顺序排成一个行列式即可.(2)x1 的分子行列式的第一列是原方程组的常数列,第二列由 x2 的系数组成,因此这个行列式可以看成是将 x1 与 x2 的分母行列式a11a12a21a22\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|中的第一列换成常数项而得.这个规则对 x2 的分子行列式也适用.
设有二阶行列式A=a11a120a22\|A\|=\left\|\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right\| a11a_{11}a22a_{22}被称为什么?对角线元素或主对角元素
上三角行列式的值等于…… 元素之积其对角线
行列式某行或某列全为零,则行列式的值等于?0
用常数 c 乘以行列式的某一行或某一列,得到的行列式的值与原来的行列式的关系?是原行列式的值的 c 倍.ca11ca12a21a22=(ca11)a22(ca12)a21=cA\|\begin{array}{cc}\mathrm{ca}_{11} & \mathrm{ca}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22}\end{array}\left\|=\left(\mathrm{ca}_{11}\right) \mathrm{a}_{22}-\left(\mathrm{ca}_{12}\right) \mathrm{a}_{21}=\mathrm{c\|A}\right\|
交换行列式不同的两行(列),行列式的值如何变化?改变正负
行列式两行或两列成比例(相同则当为比例为 1), 则行列式的值等于?0
请问a11+b11a12+b12a21+b21a22+b22=a11a12a21a22+b11b12b21b22\left\|\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|+\left\|\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right\|是否成立?如不成立,请写出对应正确的行列式性质不正确,正确形式是a11a12b21+c21b22+c22=a11a12b21b22+a11a12c21c22;b11+c11a12b21+c21a22=b11a12b21a22+c11a12c21a22.\begin{array}{l}\left\|\begin{array}{cc}\mathrm{a}_{11} & a_{12} \\ b_{21}+c_{21} & b_{22}+c_{22}\end{array}\right\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ b_{21} & b_{22}\end{array}\right\|+\left\|\begin{array}{cc}a_{11} & a_{12} \\ c_{21} & c_{22}\end{array}\right\| ; \\ \left\|\begin{array}{ll}b_{11}+c_{11} & a_{12} \\ b_{21}+c_{21} & a_{22}\end{array}\right\|=\left\|\begin{array}{cc}b_{11} & a_{12} \\ b_{21} & a_{22}\end{array}\right\|+\left\|\begin{array}{cc}c_{11} & a_{12} \\ c_{21} & a_{22}\end{array}\right\| .\end{array}
行列式的某一行(列)乘以某个数加到另一行(列)上,行列式的值如何变化?不变
若行列式中某行(列)元素均为两项之和,则行列式可表示为?两个行列式之和
设有二阶行列式A=a11a12a21a22\|A\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|,求A \|A\|的转置a11a21a12a22\left\|\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right\|
行列式和其转置的值关系是?相同
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。