banner
璃香小代

璃香小代

CS/语言学习/日记 CN/JP/EN/LA

復旦高代第一章 行列式 §1.1 二階行列式 anki版問答試問

問題答案
線性方程組中的未知數個數和方程式個數是否相等?可以相等,也可以不相等。
在矩陣形式線性方程組 Ax = b 中,A 代表什麼?係數矩陣。
在矩陣形式線性方程組 Ax = b 中,x 代表什麼?未知數向量。
在矩陣形式線性方程組 Ax = b 中,b 代表什麼?常數向量。
線性方程組的解?唯一解,無解或無窮多個解。
n 元線性方程組的標準式是什麼樣子的?a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \cdots \cdots \cdots\\a_{m1} x_{1}+a_{m2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array}
abcd=\left\|\begin{array}{ll}a & b \\ c & d\end{array}\right\|=adbcad-bc
設有二元一次方程組{a11x1+a12x2=b1a21x1+a22x2=b2\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right.求寫出克萊姆形式的解並校對自己推導過程?a22a_{22}乘第一式的兩邊,用 a12 -a_{12}乘第二式的兩邊得:{a11a22x1+a12a22x2=b1a22,a12a21x1a12a22x2=b2a12.\left\{\begin{array}{l}a_{11} a_{22} x_{1}+a_{12} a_{22} x_{2}=b_{1} a_{22}, \\-a_{12} a_{21} x_{1}-a_{12} a_{22} x_{2}=-b_{2} a_{12} .\end{array}\right.將這兩個方程式兩邊相加得:(a11a22a12a21)x1=b1a22b2a12.\left(a_{11} a_{22}-a_{12} a_{21}\right) x_{1}=b_{1} a_{22}-b_{2} a_{12} .於是x1=b1a22b2a12a11a22a12a21.x_{1}=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{12} a_{21}} .用類似的辦法消去 x1x_{1}解得:x2=a11b2a21b1a11a22a12a21.x_{2}=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}} .
如何記憶二元一次方程組:{a11x1+a12x2=b1a21x1+a22x2=b2\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right. x1=b1a12b2a22a11a12a21a22,x2=a11b1a21b2a11a12a21a22x_{1}=\frac{\left\|\begin{array}{ll}b_{1}&a_{12}\\ b_{2} & a_{22}\end{array}\right\|}{\left\|\begin{array}{ll}a_{11}&a_{12}\\ a_{21} & a_{22}\end{array}\right\|}, x_{2}=\frac{\left\|\begin{array}{ll}a_{11} & b_{1} \\ a_{21} & b_{2}\end{array}\right\|}{\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|} (1)x1 與 x2 的分母都是行列式a11a12a21a22\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\| ,即只需將原方程組未知數前的係數按原順序排成一個行列式即可.(2)x1 的分子行列式的第一列是原方程組的常數列,第二列由 x2 的系數組成,因此這個行列式可以看成是將 x1 與 x2 的分母行列式a11a12a21a22\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|中的第一列換成常數項而得.這個規則對 x2 的分子行列式也適用.
設有二階行列式A=a11a120a22\|A\|=\left\|\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right\| a11a_{11}a22a_{22}被稱為什麼?對角線元素或主對角元素
上三角行列式的值等於…… 元素之積其對角線
行列式某行或某列全為零,則行列式的值等於?0
用常數 c 乘以行列式的某一行或某一列,得到的行列式的值與原來的行列式的關係?是原行列式的值的 c 倍.ca11ca12a21a22=(ca11)a22(ca12)a21=cA\|\begin{array}{cc}\mathrm{ca}_{11} & \mathrm{ca}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22}\end{array}\left\|=\left(\mathrm{ca}_{11}\right) \mathrm{a}_{22}-\left(\mathrm{ca}_{12}\right) \mathrm{a}_{21}=\mathrm{c\|A}\right\|
交換行列式不同的兩行(列),行列式的值如何變化?改變正負
行列式兩行或兩列成比例(相同則當為比例為 1), 則行列式的值等於?0
請問a11+b11a12+b12a21+b21a22+b22=a11a12a21a22+b11b12b21b22\left\|\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|+\left\|\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right\|是否成立?如不成立,請寫出對應正確的行列式性質不正確,正確形式是a11a12b21+c21b22+c22=a11a12b21b22+a11a12c21c22;b11+c11a12b21+c21a22=b11a12b21a22+c11a12c21a22.\begin{array}{l}\left\|\begin{array}{cc}\mathrm{a}_{11} & a_{12} \\ b_{21}+c_{21} & b_{22}+c_{22}\end{array}\right\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ b_{21} & b_{22}\end{array}\right\|+\left\|\begin{array}{cc}a_{11} & a_{12} \\ c_{21} & c_{22}\end{array}\right\| ; \\ \left\|\begin{array}{ll}b_{11}+c_{11} & a_{12} \\ b_{21}+c_{21} & a_{22}\end{array}\right\|=\left\|\begin{array}{cc}b_{11} & a_{12} \\ b_{21} & a_{22}\end{array}\right\|+\left\|\begin{array}{cc}c_{11} & a_{12} \\ c_{21} & a_{22}\end{array}\right\| .\end{array}
行列式的某一行(列)乘以某個數加到另一行(列)上,行列式的值如何變化?不變
若行列式中某行(列)元素均為兩項之和,則行列式可表示為?兩個行列式之和
設有二階行列式A=a11a12a21a22\|A\|=\left\|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right\|,求A \|A\|的轉置a11a21a12a22\left\|\begin{array}{ll}a_{11} & a_{21} \\ a_{12} & a_{22}\end{array}\right\|
行列式和其轉置的值關係是?相同
載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。